First measurement of the J/ψ elliptic flow parameter v_2 in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV by the PHENIX experiment

C. Silvestre^a for the PHENIX Collaboration

^aDapnia, CEA Saclay F-91191, Gif-sur-Yvette, France silvestr@rcf.rhic.bnl.gov

Recent results indicate that the J/ψ suppression pattern differs with rapidity showing a larger suppression at forward rapidity. J/ψ suppression mechanisms based on energy density (such as color screening, interaction with co-movers, etc.) predict the opposite trend. On the other hand, it is expected that more c- \bar{c} pairs should be available to form quarkonia at mid-rapidity via recombination. Even though available models fail to reproduce simultaneously all J/ψ data and lack of experimental inputs such as cold-nuclear matter effects, open charm cross-section or feed-down ratio, they provide a way to differentiate J/ψ production from initially produced c- \bar{c} pairs and final state recombination of uncorrelated pairs, via the rapidity and transverse momentum dependence of the elliptic flow (v_2) . Measuring the J/ψ would allow to quantify the collective behavior of the J/ψ meson and its precursors and better constrain the space-time evolution of heavy-particles in the matter.

During 2007 data taking at RHIC, a large sample of Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV was collected. The statistics has been highly increased compared to previous data set from 2004, thus allowing a more precise measurement of the J/ψ meson at both mid and forward rapidity. Furthermore, the PHENIX experiment benefited from the addition of a new detector, which improves the reaction plane resolution and allows us to measure the J/psi elliptic flow parameter v_2 . Comparing this measurement to the positive v_2 measured for D-mesons (coming from non-photonic electrons) will help constrain the J/ψ production mechanisms and get a more precise picture on the proportion of J/ψ coming from direct production or charm quark coalescence.

Details on how the $J/\psi v_2$ is measured at both rapidities will be presented. The $J/\psi v_2$ as a function of transverse momentum will be compared to existing models.